生物統計研讀筆記 - 基礎與如何描述資料分布
目錄
學習 An Introduction to Biostatistic 並準備博士班資格考的筆記, 順便測試佈景的 Katex 能不能運作。
資料來源:
- An Introduction to Biostatics
- 台大生物統計公開課程
基礎
- 統計學的主要意義是什麼?
- 闡述如何搜集、分析、呈現以及詮釋資料的科學,詮釋中可以產生新的認知及理解
- Probability, probability distribution, and hypothesis testing
- 資料的類型有哪些? What type of the dataset?
- Quantitative variables:
- Continuous variables (or interval data)
- Interval: 資料間的距離相同的,零並不代表真正的「無」,而是自行定義資料區段中的一個點而已,例如:IQ 值
- Ratio: 零值是有意義的,以及資料間的距離相同,被定義的。例如:血壓值、血糖值、身高
- Discrete variable: 資料間的距離是相同的,但是只能是包含零的正整數,比如子女的數目、牙齒數量
- Continuous variables (or interval data)
- Ranked (Ordinal): 意義不在其值,而是在順序,比如說癌症分期
- Categorical data (Nominal): 測量值不具數量的意義. ex: species, gender, genotype, phenotype, healthy/diseased, and marital status.
- 溫度是哪一種? 如果是攝氏溫度 -> Interval,因為攝氏溫度的零度沒有意義,但是如果是絕對溫度的零度,則是 Ratio,因為零度有定義是完全沒有能量
- Quantitative variables:
- Nonparametric tests vs parametric tests? (無母數統計)
- Statistical analysis do not require distribution to meet the required assumptions to be analyzed
- Scientific method Process ?
- Observation: collect the data (categories, type…etc)
- Formulation of problem: including why question
- Hypothesis construction: testable cause and and relationship, ex: high level of hypertension is caused by dict
- Making a prediction
- Random variables and parameter
- Characteristics of populations
- Parameter: descriptive measure of random variables over the entire population
- 對整個 population 描述性 variables, 如中位數
- Why we need statics?
- The whole population is too large, it’s difficult to calculate.
- 統計學的主要意義是什麼?
資料分布
- What is central tendency?
- Mean
- Median
- Mode
- What is measure of dispersion and variability?
- Range, Variance, Standard Deviation, and Standard Error
- What is the definition of “variance”?
- Each observation has distance from the mean -> Deviation
- Sample Variance: $$s^2=\frac{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}{n-1}$$
- Standard Deviation
- positive square root of the population or sample variance
- Used to demostrate differences in scatter between samples or populations
- Standard Error
- the variability of the sample mean.
$$\mathrm{SE}=\frac{s}{\sqrt{n}}$$ -
- Accuracy vs Precision
- Accuracy: the closeness of a measured or computed value to its true value,
- Precision: the closeness of repeated measurements of the same quantity to each other.